SPATIOTEMPORAL GENETIC VARIATION OF ATLANTIC BLUEFIN TUNAS FROM SARDINIAN AND MEDITERRANEAN TUNA TRAPS

Rita Cannas, Giorgia Ferrara, Monica Landi, <u>Piero Addis</u>, Angelo Cau, Corrado Piccinetti, <u>Massimo Sella</u>, Fausto Tinti

ICCAT-GBYP TUNA TRAP SYMPOSIUM ON TRAP FISHERY FOR BLUEFIN TUNA 23-25 May 2011, Tangiers, Morocco Bluefin tuna and tuna traps: historical and contemporary source of population samples

Massimo Sella and his archive

Piero Addis and his archive

Massimo Sella

Biella, 29 May 1886 - 4 September 1959

1904Natural Sciences graduation

1918 Professor of Comparative Anatomy.

1921 Fellowship at Rockfeller Foundation (malary)

1924-1943 director of the Istituto di Biologia Marina per l'Adriatico di Rovigno d'Istria

			1						
STITUTO DI BIOLOGIA MARINA PER L'ADRIATICO DEL R. COMITATO TALASSOGRAFICO ITALIANO	nA		Data 20	oo. Sesso. M	Lungherga fino a me- tà arco	in mill. massina Ses	Stab Stov	enienta	
and the second second of	elidista metallo sosti hart	te al M. 6 carte	6.8.24	42 7	\$04	764	5.720 J	1. Mastras L	Curso
	1 11 1	* 2.7 "	6.8.24 /		645	709	4./20 s/autrals	ir	
	p 11 11	- n.11 "	8.8.24 V		628	692	3.780 Svenhats	it	
		m, 12 "	8.8.24		680	740	4.620 Jozuhal	15	
		n. 13 a	.8.8.24		620	682	3,820 Trantat	15	
		n. 15 "	8.8.24		840	226	9.350 svenhets	it	
which			9.8.24		662	225	4:07 sven het	15	
			9.8.24 V		618	624	3.37 Svelikato	ir	
			20.8.24		610		4.250 svent.	ner	
		A State of	20.8.24	140 ?			3.450	in	
			1 20.8.24	132 ?	633	1	- N-	1	
the second second		4	20.8.24	16 3			4.100	wh	
			21.8.24	36 3			5 4,100) int	
			21. 8.24		2 63	7 70			
			1. 21.8 11		2. 61	3 675	- 3.85	i il	
			21.8	1 1	2 62	8 72	9 3,600	il il	5
			21.8 .		2 62	5 685	- H.15	0 10	
			: 21.8 4	21	2 61	10 669			
			21.8 "	29	2 62			00 int	
	*			11	2 62		11 4.00	50 :0	
			21-8 .			10	a no		
			1	1.					
2 1 Au		1	L	+ -	1. 25	-	CONTRACTOR OF	THE REAL PROPERTY.	

Ulu

Sella M 1929, Migrazioni e habitat del tonno (Thunnus thynnus, L.) studiati col metodo degli ami, con osservazioni su l'accrescimento, sul regime delle tonnare ecc. Memoria, R. Comitato Talassografico Italiano, 156: 511–542.

The Massimo Sella ABFT tissue archive

TRINCIATO DOLGE I' QUALITÀ

36 50+4243/Kg 106 150+25

K: 73

1/2 90

150 +30

The Massimo Sella ABFT tissue archive: > 6000 specimens, most of them are ABFTs

HADR Istrian trap-like (1926-1927, N = 69, age classes 2-4)

> HSTY Ganzirri and Pizzo traps (1911, N = 39, age class 2)

HLYB Sliten trap (1911-1926, N = 111, age classes 4-13) The University of Cagliari ABFT tissue archive: 7-years collection of ABFT tissue specimens

•2 traps •5 years (2005→2009) •288 individuals

The University of Cagliari ABFT tissue archive

High-frequency age classes used for genetic analysis

The University of Cagliari ABFT tissue archive

Two phenotypic classes >> resident and migratory ABFTs????

Bluefin tuna and molecular markers: population structure of historical and contemporary ABFTs

Population genetic tools: the essential

allele frequency-based estimator of the population differentiation

+ immediate tools (descriptive and clustering analyses)

Population genetic tools: the essential

<u>mtDNA</u> loci <u>ABFT marker</u>: control region sequence moderate variation in the population time scale

nuDNA loci
<u>ABFT markers</u>: (27 microsatellites)
high variation in the population time scale
Neutral (11): genetic drift
Associated to expressed genes (16): genetic drift + environmental forces

*New concept of markers****: under-selection SNPs Under-selection: environmental forces

*** developed for ABFT and will be used in the GBYP genetic analyses

The genetic analysis of trapped ABFTs

OBJECTIVES

genetic analyses of historical and contemporary ABFT samples collected in the Central-Western Mediterranean tuna traps in the last ca. 100 years in order to infer

1) the occurrence of more than one panmictic population inhabiting the Mediterranean Sea,

 long-term and short-term spatiotemporal shift of ABFT population structure in the Mediterranean tuna traps.

mtDNA CR sequence

77 T. thynnus Thunnus_maccoyii Thunnus_obesus Thunnus_albacares <mark>81</mark>[73 T. orientalis 89 T. alalunga 697

The mtDNA marker did not provide evidence of genetic differences in historical and contemporary ABFTs

Rev Fish Biol Fisheries DOI 10.1007/s11160-010-9174-6

RESEARCH PAPER

Facts and uncertainties about the genetic population structure of Atlantic bluefin tuna (*Thunnus thynnus*) in the Mediterranean. Implications for fishery management

Jordi Viñas · Ana Gordoa · Raquel Fernández-Cebrián · Carles Pla · Ünal Vahdet · Rosa M. Araguas

Fst pairwise estimates

	HLYB	HADR	HSTY	CADR			
HADR	0.066			Spatio-temporal popul diversity retention in o of the Mediterranean	lation structuring and genetic depleted Atlantic Bluefin tuna Sea		
HSTY	0.071	0.020		Giulia Riccioni ^{a,1} , Monica Landi ^{b,1,2} , Giorgia Ferrara ^b , Ilaria Milano ^b , Alessia Cariani ^b , Lorenzo Zane ^c , Massimo Se Guido Barbujani ^a , and Fausto Tinti ^{b,4} ^a Department of Biology and Evolution. University of Ferrara, 44100 Ferrara, Italy: ^a Department of Experimental Evolutionary Biology. University of 40126 Biology, Italy: ^c Department of Biology. University of Pdova, 35121 Padova, Italy: and ⁴ Institute Center for Marine Research, 52210 Rovin (formerly Istituto Italo Germanico di Biologia Marina/Deutsch-Italienisches Institut für Meersbiologie, Rovigno, Italy)			
CADR	0.051	0.015	0.017	Edited by Barbara Blook, Stanford University, Stanford, CA, and	d accepted by the Editorial Board December 1, 2009 (received for review July 24, 2009)		
CSTY	0.093	0.021	0.016	0.016			

Bayesian clustering

Factorial correspondence analysis

nuDNA neutral ^a microsatellites

11loci286.gtx

nuDNA neutral microsatellites

Fst pairwise estimates

Fst/P	coh2005	coh2004	coh2003	coh2002	coh2000	coh1999	coh1998	coh1997	coh1996
coh2005		0.803	0.813	0.604	0.392	0.879	0.831	0.985	0.609
coh2004	-0.003		0.086	<u>0.046</u>	0.183	0.424	0.097	0.954	0.664
coh2003	-0.004	0.003		0.058	0.422	0.733	0.286	0.942	0.555
coh2002	-0.001	0.005	0.006		0.178	0.256	0.363	0.594	0.001
coh2000	0.001	0.004	0.001	0.005		0.439	0.115	0.275	0.370
coh1999	-0.007	0.001	-0.002	0.003	0.001		0.698	0.967	0.054
coh1998	-0.005	0.005	0.002	0.001	0.007	-0.003		0.628	0.001
coh1997	-0.011	-0.006	-0.006	-0.001	0.003	-0.009	-0.003		0.590
coh1996	-0.003	-0.001	-0.001	0.017	0.001	0.009	0.015	-0.003	,

Bayesian clustering

Fst pairwise estimates

Fst/P	2005	2006	2007 (IP)	2007 (PP)	2008	2009
2005		0.522	<u>0.020</u>	0.231	0.521	<u>0.004</u>
2006	0.001		0.495	0.194	0.420	0.406
2007 (IP)	0.012	0.002		0.396	0.018	0.030
2007 (PP)	0.004	0.005	0.003		0.027	0.000
2008	0.000	0.001	0.012	0.010		0.040
2009	0.007	0.001	0.012	0.018	0.004	

AMOVA

Structure tested	Variance	% total	FST	Р	
SAMPLING YEARS					
Among populations	0.0226	0.48	0.00477	0.0010	/
Within populations	4.71767	99.52			
COHORTS					
Among populations	0.01169	0.25	0.00247	0.30	
Within populations	4.72977	99.75			
PATCHY-NOT PATCHY					
Among populations	0.01395	0.29	0.00292	0.21	
Within populations	4.76134	99.71			
SEX					
Among populations	0.01094	0.23	0.00229	0.16	
Within populations	4.76049	99.77			

Trapped ABFTs and population genetics: what issues?

Population genetic and ecological issues from the <u>historically</u> <u>trapped ABFTs</u>

- At the beginning of the last century genetically differentiated groups of ABFTs were in the Central and Western Mediterranean tuna traps (e.g. Lybian tuna trap).
- 2) the pattern of genetic structuring detected in the historical tuna trapped ABFTs is coherent with the contemporary pattern of population genetic structuring of ABFT within the Mediterranean.
- 3) The recent evidence of a correlation between genetic variation of contemporary ABFTs and the latitudinal (from south to north) variation of environmental parameters in the Mediterranean is coherent with the finding of deep north to south genetic structuring of historical ABFTs.
- 4) The unique genetic composition of the HLYB sample indicates that some spatiotemporal shifts of ABFT population structure and dynamics have occurred in the Mediterranean (e.g. parallel cases: the Black and Marmara Sea ABFT stock disappearance and the "Brazilian episode").

Population genetic and ecological issues from the contemporarily trapped ABFTs

- 5) Only few evidence of significant genetic differences in the ABFT trapped in the still active Sardinian tuna traps and not correlated significantly neither with the age classes nor with the phenotypic classes > Interannual stability of the ABFT population exploited by this trap.
- 6) Some significant genetic differences are in the comparisons involving the Porto Paglia: different ABFT groups/populations exploited by the two Sardinian traps (unreliable!).

General issues from the genetic analysis of <u>Mediterranean</u> <u>trapped ABFTs</u>

- 7) Our genetic data and those present in the literature clearly indicated that more than one ABFT panmictic population are exploited in the Mediterranean.
- 8) Spatiotemporal shift in the Mediterranean ABFT population structure have been occurred and to figure out such dynamics more robust sampling design and highly-performing population genetic markers are required.
- 9) mtDNA markers are not sensitive at all while neutral or potentially under-selection microsatellite markers have only limited power of resolution at this small geographic scale. New concept of markersare needed and developed for ABFT